Microstructure formation in shape memory alloys

Konstantinos Koumatos

12/05/10
Shape memory materials undergo a broad class of solid-to-solid phase transformations known as martensitic. These involve an abrupt change of shape and a break of symmetry of the crystal lattice at some critical temperature.

Figure: Cubic-to-tetragonal

Martensitic transformations are associated with microstructure.
Shape memory materials undergo a broad class of solid-to-solid phase transformations known as martensitic. These involve an abrupt change of shape and a break of symmetry of the crystal lattice at some critical temperature.

Figure: Cubic-to-tetragonal

Martensitic transformations are associated with microstructure.
Figure: Martensitic microstructures in CuAlNi (C.H. Chu and R.D. James)

Challenging mathematical problems arise.
Figure: Martensitic microstructures in CuAlNi (C.H. Chu and R.D. James)

Challenging mathematical problems arise.
The most successful model (Ball/James, Chipot/Kinderlehrer) is based on nonlinear elasticity and leads to the following variational problem:

Minimise

\[I_\theta (y) := \int_\Omega \varphi (Dy (x), \theta) \, dx. \]

subject to appropriate boundary data \(y|_{\partial \Omega_1} = y_0 \).

Assume

\[\min \varphi (A, \theta) = 0. \]

\(\varphi \) is not known explicitly but...
The most successful model (Ball/James, Chipot/Kinderlehrer) is based on nonlinear elasticity and leads to the following variational problem:

Minimise

$$I_{\theta}(y) := \int_{\Omega} \varphi (Dy(x), \theta) \, dx.$$ subject to appropriate boundary data $y|_{\partial \Omega_1} = y_0$.

Assume

$$\min \varphi (A, \theta) = 0.$$

\(\varphi\) is not known explicitly but...
The most successful model (Ball/James, Chipot/Kinderlehrer) is based on nonlinear elasticity and leads to the following variational problem:

Minimise

\[I_\theta (y) := \int_\Omega \varphi (Dy (x) , \theta) \, dx. \]

subject to appropriate boundary data \(y|_{\partial \Omega_1} = y_0. \)

Assume

\[\min \varphi (A, \theta) = 0. \]

\(\varphi \) is not known explicitly but...
Small-energy deformations are driven by the zero set of φ:

$$K(\theta) = \{ A : \varphi(A, \theta) = 0 \} = \{ \text{energy-minimising deformation gradients at } \theta \}. $$

This is entirely determined by the break of symmetry in the lattice!

Denoting the martensitic variants by U_1, \ldots, U_N, we assume that

$$K(\theta) = \begin{cases}
\alpha(\theta) \text{SO}(3), & \theta > \theta_c \\
\text{SO}(3) \cup \bigcup_{i=1}^n \text{SO}(3) U_i, & \theta = \theta_c \\
\bigcup_{i=1}^n \text{SO}(3) U_i, & \theta < \theta_c
\end{cases}$$

with $\alpha(\theta_c) = 1$.
Small-energy deformations are driven by the zero set of φ:

$$K(\theta) = \{A : \varphi(A, \theta) = 0\} = \{\text{energy-minimising deformation gradients at } \theta\}.$$

This is entirely determined by the break of symmetry in the lattice!

Denoting the martensitic variants by U_1, \ldots, U_N, we assume that

$$K(\theta) = \begin{cases}
\alpha(\theta) \text{SO}(3), & \theta > \theta_c \\
\text{SO}(3) \cup \bigcup_{i=1}^n \text{SO}(3) U_i, & \theta = \theta_c \\
\bigcup_{i=1}^n \text{SO}(3) U_i, & \theta < \theta_c
\end{cases}$$

with $\alpha(\theta_c) = 1$.
In the context of vector valued functions, the existence of a minimiser for $I_\theta (y)$ is roughly equivalent to the energy density φ being *quasiconvex*.

Definition

We say that $\varphi : M^{n \times n} \to \mathbb{R}$ is *quasiconvex* if for all $F \in M^{3 \times 3}$ and for some bounded and open set $E \subset \mathbb{R}^n$ with $\mathcal{L}^n (\partial E) = 0$

$$\varphi (F) \leq \frac{1}{\mathcal{L}^n (E)} \int_E \varphi (F + Dy (x)) \, dx$$

for all $y \in W^{1,\infty}_0 (E, \mathbb{R}^n)$, whenever the integral exists.

no local characterization of quasiconvexity exists (J. Kristensen)/
definition becomes hard to use.
In the context of vector valued functions, the existence of a minimiser for $l_\theta(y)$ is roughly equivalent to the energy density φ being \textbf{quasiconvex}.

\textbf{Definition}
We say that $\varphi : M^{n \times n} \rightarrow \mathbb{R}$ is \textit{quasiconvex} if for all $F \in M^{3 \times 3}$ and for some bounded and open set $E \subset \mathbb{R}^n$ with $\mathcal{L}^n(\partial E) = 0$

$$\varphi(F) \leq \frac{1}{\mathcal{L}^n(E)} \int_E \varphi(F + Dy(x)) \, dx$$

for all $y \in W^{1,\infty}_0(E, \mathbb{R}^n)$, whenever the integral exists.

\textbf{Konstantinos Koumatos}
Microstructure formation in shape memory alloys

no local characterization of quasiconvexity exists (J. Kristensen)/definition becomes hard to use.
Typical energy-densities fail to be quasiconvex and so one expects that the infimum of the energy is not in general attained.

An energy-minimising sequence for I_θ will not converge but will rather generate a zero-energy microstructure associated with a limiting object (weak limit) called the macroscopic deformation gradient.

Question: Can we characterize the set of all (affine) macroscopic deformation gradients corresponding to zero-energy microstructures?
Typical energy-densities fail to be quasiconvex and so one expects that the infimum of the energy is not in general attained.

An energy-minimising sequence for l_θ will not converge but will rather generate a zero-energy microstructure associated with a limiting object (weak limit) called the macroscopic deformation gradient.

Question: Can we characterize the set of all (affine) macroscopic deformation gradients corresponding to zero-energy microstructures?
Typical energy-densities fail to be quasiconvex and so one expects that the infimum of the energy is not in general attained.

An energy-minimising sequence for l_θ will not converge but will rather generate a zero-energy microstructure associated with a limiting object (weak limit) called the macroscopic deformation gradient.

Question: Can we characterize the set of all (affine) macroscopic deformation gradients corresponding to zero-energy microstructures?
The answer is yes and the set is the \textit{quasiconvex hull} of $K - K^{qc}$.

For a SMA it provides the set of all affine deformations recoverable upon heating.

However, calculating quasiconvex hulls is usually far from trivial. Very little is known about the structure of these sets and in cases applicable to shape memory materials, we can only solve the \textit{two well problem}, i.e.

$$K = SO(3) U_1 \bigcup SO(3) U_2.$$
The answer is yes and the set is the quasiconvex hull of $K - K^{qc}$.

For a SMA it provides the set of all affine deformations recoverable upon heating.

However, calculating quasiconvex hulls is usually far from trivial. Very little is known about the structure of these sets and in cases applicable to shape memory materials, we can only solve the two well problem, i.e.

$$K = SO(3)U_1 \bigcup SO(3)U_2.$$
The answer is yes and the set is the quasiconvex hull of \(K - K^{qc} \).

For a SMA it provides the set of all affine deformations recoverable upon heating.

However, calculating quasiconvex hulls is usually far from trivial. Very little is known about the structure of these sets and in cases applicable to shape memory materials, we can only solve the two well problem, i.e.

\[
K = SO(3) U_1 \bigcup SO(3) U_2.
\]
A useful concept is that of rank-one connections. We say two matrices A and B are rank-one connected if

$$A - B = a \otimes n.$$
A useful concept is that of rank-one connections. We say two matrices A and B are rank-one connected if

$$A - B = a \otimes n.$$

When rank-one connections exist between the wells, the simplest non-trivial elements of K^{qc} are simple laminates.

A planar interface between the austenite and a (homogeneous) microstructure of martensite represented by Dy is equivalent to

$$Dy = 1 + b \otimes m.$$
A useful concept is that of **rank-one connections**. We say two matrices A and B are rank-one connected if

$$A - B = a \otimes n.$$

When rank-one connections exist between the wells, the simplest non-trivial elements of K^{qc} are **simple laminates**.

A **planar interface** between the austenite and a (homogeneous) microstructure of martensite represented by Dy is equivalent to

$$Dy = 1 + b \otimes m.$$
Simple laminates can form compatible interfaces with the austenite referred to as classical.
Simple laminates can form compatible interfaces with the austenite referred to as **classical**.

Figure: Classical austenite-martensite interface in CuAlNi (C.H. Chu and R.D. James).
Nevertheless, K^{qc} typically contains objects far more complicated than simple laminates.
Nevertheless, K^{qc} typically contains objects far more complicated than simple laminates.

Figure: Parallelogram microstructure in CuAlNi (H. Seiner)
Compatible interfaces with the austenite are still possible; these are called non-classical.

J.M. Ball and R.D. James have provided an extensive theoretical investigation of non-classical interfaces for the cubic-to-tetragonal case by analysing the inclusion

\[1 + b \otimes m \in K^{qc}. \]

Such interfaces have not been observed for materials undergoing a cubic-to-tetragonal transformation.
Compatible interfaces with the austenite are still possible; these are called non-classical.

J.M. Ball and R.D. James have provided an extensive theoretical investigation of non-classical interfaces for the cubic-to-tetragonal case by analysing the inclusion

\[1 + b \otimes m \in K^{qc}. \]

Such interfaces have not been observed for materials undergoing a cubic-to-tetragonal transformation.
Compatible interfaces with the austenite are still possible; these are called non-classical.

J.M. Ball and R.D. James have provided an extensive theoretical investigation of non-classical interfaces for the cubic-to-tetragonal case by analysing the inclusion

$$1 + b \otimes m \in K^{qc}.$$

Such interfaces have not been observed for materials undergoing a cubic-to-tetragonal transformation.
In other materials non-classical interfaces have been observed but lack of information on K^{qc} forces us into a case-by-case investigation.
In other materials non-classical interfaces have been observed but lack of information on K^{qc} forces us into a case-by-case investigation.

Figure: Non-classical interface between austenite and a parallelogram microstructure of martensite in CuAlNi (H. Seiner)
In a more challenging problem, non-classical interfaces can also be curved...
In a more challenging problem, non-classical interfaces can also be curved...

Figure: Curved austenite-martensite interface in CuAlNi resulting from the inhomogeneity of the volume fractions (H. Seiner)

Compatibility is not known/different approach is needed.

Konstantinos Koumatos

Microstructure formation in shape memory alloys
In a more challenging problem, non-classical interfaces can also be curved...

Figure: Curved austenite-martensite interface in CuAlNi resulting from the inhomogeneity of the volume fractions (H. Seiner)

Compatibility is not known/different approach is needed.
Our work is concentrated on

- the analysis of microstructures and non-classical interfaces,
- the investigation of curved interfaces,
- mechanisms of nucleation (motivated by an experiment of H. Seiner/related to quasiconvexity conditions for the energy density) and
- questions on the structure of semi-convex hulls arising from the above considerations.

The end
Our work is concentrated on

- the analysis of microstructures and non-classical interfaces,
- the investigation of curved interfaces,
- mechanisms of nucleation (motivated by an experiment of H. Seiner/related to quasiconvexity conditions for the energy density) and
- questions on the structure of semi-convex hulls arising from the above considerations.

The end