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Introduction

Describing the electronic state of a crystal in presence of a defect is a
major issue in condensed matter physics
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Structural damage created by displacement of zirconium,
silicon and oxygen atoms in crystalline zircon (a candi-
date for storing nuclear waste for over 250 000 years) in
the presence of a heavy nucleus.

Farnan et al, Nature 445 (2007), 190.

Germanium crystal doped with arsenic or indium.
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Main techniques used at present

» supercell method (periodized system in a large box)

P B S e @ spurious interactions between the
S TG S B T defect and its periodic images

STt Tt TN " T @ inaccuracies for charged defects

The supercell model
» perturbative methods (e.g., Green functions expansions)
@ only small defects

» gluing methods (models in different regions, pasted together)
@ rather empirical
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» clamped classical nuclei with local defect + quantum electrons

» infinite system, living in the whole space (no boundary effects)

» Kohn-Sham type model for oo electrons (mean-field)

» describe the defect as quasi molecule embedded in perfect crystal

» ~~ long range effects (screening), can be seen at macroscopic scale

References:

[CDL1] Cances, Deleurence & M.L. Comm. Math. Phys. 281 (2008).
[CDL2] Cances, Deleurence & M.L. J. Phys.: Condens. Matter 20 (2008).
[CL] Cances & M.L. Arch. Rat. Mech. Anal. 197 (2010).

[Rev] Cances, M.L. & Stoltz. Proceedings of Workshop “Numerical Analysis of Multiscale
Computations” at Banff (Dec. 2009).
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Mean-field models

» State of the quantum electrons: a one-particle density matrix

v L2(R37C)—> L2(R37(C)7 7:’7*7 0§7§ 1 J

[e~ spin neglected]
Typical example:

N
v = Z |on)(pn| <~ Hartree-Fock state for tr(y) = [ py = N electrons

n=1

(but fractional occupation numbers allowed) [p-(x) = 7(x, x)]

Crystal: v = operator of infinite rank
@ infinite charge, tr(y) = 0o

@ infinite energy
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Methodology

Finite
system

model for N electrons

Eper(N) =eN + O(N) Edef(N) = Eper(N) +c+ 0(1)

thermodynamic limit N — oo

Infinite periodic Infinite perturbed
system system
ground state 70, ground state v = 2., + Q
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Finite system

» Kohn-Sham energy, 1 = external nuclear density

'\/) // ,U dX dy
RS \X—Y\
// P dxdy+Fxc(/)m)
RS \X—

» Eq. for stationary states with tr(v) =

Els(y) =1tr (

Y = X(—oo,er) (Hy) + 6 0 <0 < X{e 3 (Hy), er=Fermi level
A 0

H, = e Vy+ — o Fee(p~) (mean-field Fock operator)

—AV, = 47(p, u) (self-consistent electrostatic potential)

—o-0—6co! 1 o (H,)
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Periodic Fermi sea |
/ L /
/. ) /. ) / Lattice £ C R3. Nuclei: ;1 = Uper = ZX(._Z)

zel
/ : / * / X > 0 measure supported in I’
7 L ./ ./
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Periodic Fermi sea |
/ L /
/. ) /. ) / Lattice £ C R3. Nuclei: ;1 = Uper = ZX(._Z)

zel
/ : / * / X > 0 measure supported in I’
7 L ./ ./

» Equation for infinite periodic crystal [CLL,CDL1]:

]

0 _ 0
,yper T X(—OO7€F) (Hper) ?
A 0
0 _ 0
Hoer = ) + Voer + TFXC([)’\r’ger)"
o () ap
0 _
ep —AVy =47 (p,yger — uper>,
/r (rg, = tper) =0.
v
Insulator / Conductor Note: 6 =0
semi-conductor
N=2 N=3 [CLL] Catto, Le Bris, Lions, Ann. I. Henri Poincaré 18 (2001).
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Periodic Fermi sea Il

Theorem (Periodic Fermi sea for F,. = 0 [CLL,CDL1])

For every L-periodic jiper, there exists a unique periodic solution to ().

This state is the one obtained in the thermodynamic limit:

E(L
lim % = energy per unit vol. ofﬁ/ger and pp — pyo_ locally
L—oo L 284

» Assumption in the following: insulator
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Introducing a defect

Take /1 = fiper + 1 where v=local defect (no sign!)

Y = X(—ooser) (Hy) + 0
A 0
Hy=——= 1+ Vo + = Flp;
Y 2 + Vit dp (P)
—AV, =47 (py — fiper — V)

I v 8|F
09000 — > o(Hy)
Fermi sea electrons
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Introducing a defect

Take /1 = fiper + 1 where v=local defect (no sign!)

Y = X(—oo,er) (Hy) +6

A 0
Hy = ) +Vy+ %Fxc(f’w)
—AV, = 477(,07 — tper — V)
I v ElF
09000 — > o(Hy)
Fermi sea electrons

» ldea: write everything relatively to VSer

Q=7vy- ’Yger = X(—o0,eF) (H‘/) ~ X(—o0.eF) (ngr) i
(3%) 4 Hy = HSe + Wo + Gle(pq)
—AWQ = 47T([)Q - V)7 Gic(/)Q) - %Fxc(ﬂﬂ’gcr + /)Q) - %FXC(/)A{SU)
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Bound states

Theorem (Existence of bound states for F,. = 0 [CDLL,CL])

» For every ef in the gap and v such that v« |x|~1 € L2(R3) + HY(R3),
there exists at least one solution Q to (%*), such that

Q< S, and @~ = ’\/peerYper' Q++ - (’\/per) Q(’Vger)L € 6
and

po € L2(R3) with/ / Pe(X)pely) o oo
R3 |X—)/|

The associated density pq is unique, hence so is the mean-field op. H..
Only § can vary among solutions.

» These states are the ones obtained in the thermodynamic limit.

Rmk!. Nonperturbative, variational, charged defects

Rmk2. No mathematical result so far for F,c # 0 ®

Mathieu LEWIN (CNRS / Cergy) Local Defects in Quantum Crystals Oxford, July 4, 2011 11 /19



» Variational argument: subtract infinite free energy of Fermi sea

{E o) - e v} - {800 — e R}

1
= tr((Hger—2F) @) —D(po; v)+5D(0Q: @)+ Ficlpg, + @) — Frelpyg

=06x(pQ)

)

7 per

and minimize w.rt. Q =~ — ’yger

» The energy is bounded from below (when F,. = 0):
° tr((Hper er)Q) >0
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Effective Charges and Screening

Look at: (Z = [p;v)

total charge of defect = Z — ‘charge’ of polarized Fermi sea

~fapo 777

Rmk. subtracting infinite quantities is dangerous!

Zj = +o00
j-2y =1 A

j=0
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Effective Charges and Screening

Look at: (Z = [p;v)

total charge of defect = Z — ‘charge’ of polarized Fermi sea

~fapo 777

Rmk. subtracting infinite quantities is dangerous!

D -2 = Y

j>0 j>0 =T

jz0
» bare charge
@ obtained in the thermodynamic limit

@ often an integer; we expect an overall neutral Fermi sea if small defect

» microscopic physical charge
@ seen in perturbation theory Av with A <1

» macroscopic physical charge
@ seen in homogenization limit A3v(\-) with A <1
Mathieu LEWIN (CNRS / Cergy)
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Bare Charge

» A compact self-adjoint operator, A = \j|p;)(¥il.

A traceclass (€ G1) < ) ;|\l < o0 J

Then tr(A) := )", (ei, Ae;) CV and does not depend on the basis {e;}
Also pa(x) := Y, Ailpi(x)|? € LY(R3)

> > ; (ei,Aej) can CV for one basis but not for another onel!

t Bare charge of Fermi sea:

“tr”(Q)::Z ,,Qe —|—Z ,,Qe J

{e"}

1. eF i

{e7} ..
Recall / lpal? < oo but / |p@| need not be finite
R? R3
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Microscopic Screening

Theorem (Perturbation theory for charged defects [CL])

Fix ep € gap and take a defect density of the form \v with Z = fR3 v #0.
For small enough X, then ‘tr”(Q) = 0 but Q is not trace-class. If L is
anisotropic, then pg is not in L*(R3).

» Reason: by perturbation theory, pg = p1 A + O(A?), where
p1=—L(p1 —v)
L =response function (can be explicitely computed)
fel}(R?) = |Aimoﬁ/(?)(a|k|) —oTLlo for o€ S2

where L > 0, and L # 0. For anisotropic materials, L # cls

» Microscopic physical charge of defect:

V4 trR3(L) >1 J

ith =1
e with €, + 3
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Macroscopic Screening

pQ = —L(pg —v)+o(pg —v) <= v —pg=(1+L)v+o(pg —v).

Theorem (Homogenization limit [CL])

Fix er € gap and take vy, = nPv(-n). Let V;y = (v, — pq,) * |- |~*. Then

W, (x) = n=V,(x/n) converges weakly as n — 0 to the unique sol. of
—div(ey VW) = 4nv

where e\ s a 3 X 3 symmetric matrix # |3, the macroscopic dielectric

tensor of the perfect crystal.

e is given by the Adler-Wiser formula [AdI62,Wis63,BarRes86]

» Macroscopic physical charge for isotropic crystals:

4
— with 1 <ey <eg, J
EM

[AdI62] Adler, Phys. Rev. 126 (1962). [Wis63] Wiser, Phys. Rev. 129 (1963).
[BarRes86] Baroni and Resta, Phys. Rev. B 33 (1986).
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Numerics |

Two different scales:
@ use of Bloch transform to discretize periodic pb
@ use of localized Wannier basis for the locally perturbed pb
Ex: Maximally Localized Wannier functions [MV]

— avoid variational collapse

» 1D simulation [CDL2]: Yukawa potential, Z = 2

MLWEFs: calculated once and for
1sp 1 all, independently of defect
Basis very simple to enlarge

“\‘ Left: Modulus of the MLWFs corre-
sponding to the 2 filled bands and the
first 2 unfilled bands

[MV] Marzari, Vanderbilt. Phys. Rev. B 56
— >~ (1997).
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Numerics Il

Computation of Q: relaxed constraint algorithms [Can], v = 5.3 — 209

0.47

Polarization of the Fermi sea in the presence of defect, calculated with 28 MLWFs.
As good as supercell calculation in a basis set of size ~1000.
Left: P, and p,. Right: p,

T P

[Can] Cances, Le Bris Int. J. Quantum Chem. 79 (2000). Cances, J. Chem. Phys. 114 (2001).
Kudin, Scuseria, Cancgs, J. Chem. Phys. 116 (2002).
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Conclusion

» Model in whole space for localized defect
@ use perfect crystal as reference;
@ variational;

@ charge screening.

» Well-behaved computational method
@ two scales;
@ Wannier functions for local perturbation;

@ minimization.

» Extensions
° Fxc 7é 0;
@ numerical tests in 3D;

@ time-dependent setting.
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