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Introduction

Describing the electronic state of a crystal in presence of a defect is a
major issue in condensed matter physics

Germanium crystal doped with arsenic or indium.
Structural damage created by displacement of zirconium,
silicon and oxygen atoms in crystalline zircon (a candi-
date for storing nuclear waste for over 250 000 years) in
the presence of a heavy nucleus.
Farnan et al, Nature 445 (2007), 190.
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Main techniques used at present

◮ supercell method (periodized system in a large box)

The supercell model

spurious interactions between the
defect and its periodic images

inaccuracies for charged defects

◮ perturbative methods (e.g., Green functions expansions)

only small defects

◮ gluing methods (models in different regions, pasted together)

rather empirical
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Our method

◮ clamped classical nuclei with local defect + quantum electrons

◮ infinite system, living in the whole space (no boundary effects)

◮ Kohn-Sham type model for ∞ electrons (mean-field)

◮ describe the defect as quasi molecule embedded in perfect crystal

◮  long range effects (screening), can be seen at macroscopic scale

References:
[CDL1] Cancès, Deleurence & M.L. Comm. Math. Phys. 281 (2008).

[CDL2] Cancès, Deleurence & M.L. J. Phys.: Condens. Matter 20 (2008).

[CL] Cancès & M.L. Arch. Rat. Mech. Anal. 197 (2010).

[Rev] Cancès, M.L. & Stoltz. Proceedings of Workshop “Numerical Analysis of Multiscale
Computations” at Banff (Dec. 2009).
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Mean-field models

◮ State of the quantum electrons: a one-particle density matrix

γ : L2(R3,C) → L2(R3,C), γ = γ∗, 0 ≤ γ ≤ 1

[e− spin neglected]

Typical example:

γ =
N∑

n=1

|ϕn〉〈ϕn|! Hartree-Fock state for tr(γ) =
´

ργ = N electrons

(but fractional occupation numbers allowed) [ργ(x) = γ(x , x)]

Crystal: γ = operator of infinite rank

infinite charge, tr(γ) = ∞

infinite energy
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Methodology

Finite
system

Infinite periodic
system

Infinite perturbed
system

thermodynamic limit N → ∞

model for N electrons

Eper(N) = ēN + o(N) Edef(N) = Eper(N) + c + o(1)

ground state γ0
per ground state γ = γ0

per + Q
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Finite system

◮ Kohn-Sham energy, µ = external nuclear density

Eµ
KS(γ) := tr

(
−∆

2
γ

)
−

ˆˆ

R6

µ(x)ργ(y)

|x − y |
dx dy

+
1

2

ˆˆ

R6

ργ(x)ργ(y)

|x − y |
dx dy + Fxc(ργ)

◮ Eq. for stationary states with tr(γ) = N




γ = χ(−∞,εF) (Hγ) + δ 0 ≤ δ ≤ χ{εF}(Hγ), εF=Fermi level

Hγ = −
∆

2
+ Vγ +

∂

∂ρ
Fxc(ργ) (mean-field Fock operator)

−∆Vγ = 4π(ργ − µ) (self-consistent electrostatic potential)

σ (Hγ)

εF 0
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Periodic Fermi sea I

Γ

Lattice L ⊂ R
3. Nuclei: µ = µper =

∑

z∈L

χ(·−z)

χ ≥ 0 measure supported in Γ
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Periodic Fermi sea I

Γ

Lattice L ⊂ R
3. Nuclei: µ = µper =

∑

z∈L

χ(·−z)

χ ≥ 0 measure supported in Γ

◮ Equation for infinite periodic crystal [CLL,CDL1]:

εF

εF

Insulator /
semi-conductor

Conductor

N = 2 N = 3

(⋆)





γ0per = χ(−∞,εF)

(
H0
per

)
,

H0
per = −

∆

2
+ V 0

per +
∂

∂ρ
Fxc(ργ0

per
),

−∆V 0
per = 4π

(
ργ0

per
− µper

)
,

ˆ

Γ

(
ργ0

per
− µper

)
= 0.

Note: δ ≡ 0

[CLL] Catto, Le Bris, Lions, Ann. I. Henri Poincaré 18 (2001).
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Periodic Fermi sea II

Theorem (Periodic Fermi sea for Fxc ≡ 0 [CLL,CDL1])

For every L-periodic µper, there exists a unique periodic solution to (⋆).

This state is the one obtained in the thermodynamic limit:

lim
L→∞

E (L)

L3
= energy per unit vol. of γ0per and ρL → ργ0

per
locally

L

◮ Assumption in the following: insulator
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Introducing a defect

Take µ = µper + ν where ν=local defect (no sign!)




γ = χ(−∞,εF) (Hγ) + δ

Hγ = −
∆

2
+ Vγ +

∂

∂ρ
Fxc(ργ)

−∆Vγ = 4π
(
ργ − µper − ν

)

bb bcbc bcbc σ(Hγ )

electronsFermi sea

γ εF
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Introducing a defect

Take µ = µper + ν where ν=local defect (no sign!)




γ = χ(−∞,εF) (Hγ) + δ

Hγ = −
∆

2
+ Vγ +

∂

∂ρ
Fxc(ργ)

−∆Vγ = 4π
(
ργ − µper − ν

)

bb bcbc bcbc σ(Hγ )

electronsFermi sea

γ εF

◮ Idea: write everything relatively to γ0per

(⋆⋆)





Q = γ − γ0per = χ(−∞,εF) (Hγ)− χ(−∞,εF)

(
H0
per

)
+ δ

Hγ = H0
per +WQ + G ′

xc(ρQ)

−∆WQ = 4π
(
ρQ − ν

)
, G ′

xc(ρQ) =
∂
∂ρ

Fxc(ργ0
per

+ ρQ)−
∂
∂ρ

Fxc(ργ0
per
)
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Bound states

Theorem (Existence of bound states for Fxc ≡ 0 [CDL1,CL])

◮ For every εF in the gap and ν such that ν ∗ |x |−1 ∈ L2(R3) + Ḣ1(R3),
there exists at least one solution Q to (⋆⋆), such that

Q ∈ S2 and Q−− = γ0perQγ0per, Q
++ =

(
γ0per

)⊥
Q
(
γ0per

)⊥
∈ S1

and

ρQ ∈ L2(R3) with

ˆ

R3

ˆ

R3

ρQ(x) ρQ(y)

|x − y |
dx dy < ∞.

The associated density ρQ is unique, hence so is the mean-field op. Hγ .
Only δ can vary among solutions.

◮ These states are the ones obtained in the thermodynamic limit.

Rmk1. Nonperturbative, variational, charged defects

Rmk2. No mathematical result so far for Fxc 6= 0 /
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Method

◮ Variational argument: subtract infinite free energy of Fermi sea

“
{
E
µper+ν

KS (γ)− εF tr(γ)
}
−
{
E
µper+ν

KS (γ0per)− εF tr(γ0per)
}

”

= tr
(
(H0

per−εF)Q
)
−D(ρQ , ν)+

1

2
D(ρQ , ρQ)+Fxc(ργ0

per
+ ρQ)− Fxc(ργ0

per
)

︸ ︷︷ ︸
:=Gxc(ρQ)

and minimize w.r.t. Q = γ − γ0per

◮ The energy is bounded from below (when Fxc ≡ 0):

tr
(
(H0

per − εF)Q
)
≥ 0

−D(ρQ , ν) +
1
2D(ρQ , ρQ) ≥ −1

2D(ν, ν)
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Effective Charges and Screening

Look at: (Z =
´

R3 ν)

total charge of defect = Z − ‘charge’ of polarized Fermi sea︸ ︷︷ ︸
=
´

R3 ρQ ???

Rmk. subtracting infinite quantities is dangerous!

∑

j≥0

j − 2
∑

j≥0

j =





∑

j odd

j = +∞

−
∑

j≥0

j = −∞
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Effective Charges and Screening

Look at: (Z =
´

R3 ν)

total charge of defect = Z − ‘charge’ of polarized Fermi sea︸ ︷︷ ︸
=
´

R3 ρQ ???

Rmk. subtracting infinite quantities is dangerous!

∑

j≥0

j − 2
∑

j≥0

j =





∑

j odd

j = +∞

−
∑

j≥0

j = −∞

◮ bare charge
obtained in the thermodynamic limit
often an integer; we expect an overall neutral Fermi sea if small defect

◮ microscopic physical charge
seen in perturbation theory λν with λ ≪ 1

◮ macroscopic physical charge
seen in homogenization limit λ3ν(λ·) with λ ≪ 1
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Bare Charge

◮ A compact self-adjoint operator, A =
∑

i λi |ϕi 〉〈ϕi |.

A trace-class (∈ S1) ⇐⇒
∑

i |λi | < ∞

Then tr(A) :=
∑

i 〈ei ,Aei 〉 CV and does not depend on the basis {ei}

Also ρA(x) :=
∑

i λi |ϕi (x)|
2 ∈ L1(R3)

◮

∑
i 〈ei ,Aei 〉 can CV for one basis but not for another one!

εF

{e−
i
}

{e+
i
}

Bare charge of Fermi sea:

“tr”(Q) :=
∑

i

〈
e+i ,Qe+i

〉
+

∑

i

〈
e−i ,Qe−i

〉

Recall

ˆ

R3

|ρQ |
2 < ∞ but

ˆ

R3

|ρQ | need not be finite
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Microscopic Screening

Theorem (Perturbation theory for charged defects [CL])

Fix εF ∈ gap and take a defect density of the form λν with Z =
´

R3 ν 6= 0.
For small enough λ, then “tr”(Q) = 0 but Q is not trace-class. If L is
anisotropic, then ρQ is not in L1(R3).

◮ Reason: by perturbation theory, ρQ = ρ1λ+ O(λ2), where

ρ1 = −L(ρ1 − ν)

L =response function (can be explicitely computed)

f ∈ L1(R3) ⇒ lim
|k|→0

L̂(f )(σ|k |) = σTLσ for σ ∈ S2,

where L ≥ 0, and L 6= 0. For anisotropic materials, L 6= cI3

◮ Microscopic physical charge of defect:

λZ

εµ
with εµ = 1 +

trR3(L)

3
> 1

Mathieu LEWIN (CNRS / Cergy) Local Defects in Quantum Crystals Oxford, July 4, 2011 15 / 19



Macroscopic Screening

ρQ = −L(ρQ − ν) + o(ρQ − ν) ⇐⇒ ν − ρQ = (1 + L)−1ν + o(ρQ − ν).

Theorem (Homogenization limit [CL])

Fix εF ∈ gap and take νη = η3ν(·η). Let Vη = (νη − ρQη
) ∗ | · |−1. Then

Wη(x) = η−1Vη(x/η) converges weakly as η → 0 to the unique sol. of

−div(εM∇W ) = 4πν

where εM is a 3× 3 symmetric matrix 6= I3, the macroscopic dielectric
tensor of the perfect crystal.

εM is given by the Adler-Wiser formula [Adl62,Wis63,BarRes86]

◮ Macroscopic physical charge for isotropic crystals:

Z

εM
with 1 < εM < εµ

[Adl62] Adler, Phys. Rev. 126 (1962). [Wis63] Wiser, Phys. Rev. 129 (1963).
[BarRes86] Baroni and Resta, Phys. Rev. B 33 (1986).
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Numerics I

Two different scales:

use of Bloch transform to discretize periodic pb
use of localized Wannier basis for the locally perturbed pb
Ex: Maximally Localized Wannier functions [MV]

→ avoid variational collapse

◮ 1D simulation [CDL2]: Yukawa potential, Z = 2

0 10 205 15

0

1

0.5

1.5

εF

MLWFs: calculated once and for
all, independently of defect
Basis very simple to enlarge

Left: Modulus of the MLWFs corre-
sponding to the 2 filled bands and the
first 2 unfilled bands

[MV] Marzari, Vanderbilt. Phys. Rev. B 56
(1997).
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Numerics II

Computation of Q: relaxed constraint algorithms [Can], ν = δ0.3 − 2δ0
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Polarization of the Fermi sea in the presence of defect, calculated with 28 MLWFs.
As good as supercell calculation in a basis set of size ∼1000.

Left: ργ0
per

and ργ . Right: ργ − ργ0
per

.

[Can] Cancès, Le Bris Int. J. Quantum Chem. 79 (2000). Cancès, J. Chem. Phys. 114 (2001).
Kudin, Scuseria, Cancès, J. Chem. Phys. 116 (2002).
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Conclusion

◮ Model in whole space for localized defect

use perfect crystal as reference;

variational;

charge screening.

◮ Well-behaved computational method

two scales;

Wannier functions for local perturbation;

minimization.

◮ Extensions

Fxc 6= 0;

numerical tests in 3D;

time-dependent setting.
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